Import statements


					import numpy as np
					# linear algebra
					# matrix math

					import pandas as pd
					# data analysis
					# financial analysis
					# rows columns dataframe
					# for structured data

					import matplotlib.pyplot as plt
					# plt is convention

					import re
					# regular expression
					# text processing

					# Need to install jupyterlab

					from bs4 import BeautifulSoup  # web scraping
					# or
					import bs4

					import re # regular expressions text processing

					import argparse # command line utility

					# pytorch
					import torch
					from torch import nn # neural network nn
					from torch import optim # optimizer
					from torchvision import models # computer vision module

					from PIL import Image # pillow image library

					import json # json module

				

Neural Network Basics


					def neural_network(input, weight, bias):
						prediction = input * weight + bias
						return prediction

					# * can mean dot product, matrix multiplication, convolution
					# Not a simple multiplication
				
<p>Demonstrating p tag </p>

					() => {
					console.log("anonymous");
					}
				

					# cool markdown
					`code` in markdown
				

				f = open('mytextfile.txt') # f for file

				for line in f:
					line = line.rstrip()
				    print(line)

				f.close() # close is important
				

One Hot Encoding

See one hot encoding flash card for explanation


					doc1 = ['cat']
					doc2 = ['cat', 'dog']
					doc3 = ['bird']
					doc4 = ['dog']

					vocab_matrix =[
					[1, 0, 0],
					[0, 1, 0],
					[0, 0, 1],
					]
				

					def get_min(node):
						if node is None:
							raise ValueError
						if node.left is None:
							raise ValueError
						n = node
						while n.left:
							n = n.left
						return n.val
				

Command line console

Verify python version

Verify pip version


					python --version
					pip --version
					python3
					py
				

Run python script on windows

Windows


					py my_python_script.py
				

Matplotlib


					import matplotlib.pyplot as plt

					# create mock data
					x = [i for i in range(5)]
					y = [2*xx for xx in x]

					plt.plot(x,y) # simple plot
					plt.title('Simple Matplotlib') #add title
					plt.ylabel('y') #add y label
					plt.xlabel('x')
					plt.show() # display the plot
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					# cool markdown
					`code` in markdown
				

					class Node(object):
						def __init__(self, data):
							self.data = data
							self.neighbors = []

					# variation
					class Node(object):
					    def __init__(self, val):
							self.val = val
							self.children = []

					# variation
					class Node(object):
						def __init__(self, data):
							self.data = data
							self.left = None
							self.right = None

					# some basic operations
					# track visited node
					node_completed = {}

					# init a node
					root = 10
					node = Node(root)

					node_completed['root'] = node

					# retrieve values
					node_completed['root'].data
					nbrs = node_completed['root'].neighbors
					nbrs

					# explore all neighbors,
					# iterate through the neighbors list
					# for n in root.neighbors:


				'''
								 1
							/     \
						 /       \
						2          3
					/   \      /    \
				None  None  None   None
				#leaves

				Breadth first search (BFS) is the most straight forward print out 1, 2, 3
				'''
				

					# cool markdown
					`code` in markdown
				

					# init a new set, assign it to a variable
					# add a number to it and display that variable
					my_set = set()
					my_set.add(1)
					my_set # --> returns {1}

				

					num_list = [1, 2, -99, 8, 2]

					# Uniqtech Co. min tutorial

					def state_machine(num_list):
						min_val = num_list[0]
						# alternative : min_val = float('inf')

						for num in num_list:
							if num < min_val:
 							min_val = num

					return min_val


					state_machine(num_list)
					# >>> -99
					# Uniqtech Co. min tutorial